按提交时间
按主题分类
按作者
按机构
  • Spatiotemporal changes of typical glaciers and their responses to climate change in Xinjiang, Northwest China

    分类: 地球科学 >> 地理学 提交时间: 2022-05-30 合作期刊: 《干旱区科学》

    摘要:

    Abstract: Glaciers are highly sensitive to climate change and are undergoing significant changes in mid-latitudes. In this study, we analyzed the spatiotemporal changes of typical glaciers and their responses to climate change in the period of 1990–2015 in 4 different mountainous sub-regions in Xinjiang Uygur Autonomous Region of Northwest China: the Bogda Peak and Karlik Mountain sub-regions in the Tianshan Mountains; the Yinsugaiti Glacier sub-region in the Karakorum Mountains; and the Youyi Peak sub-region in the Altay Mountains. The standardized snow cover index (NDSI) and correlation analysis were used to reveal the glacier area changes in the 4 sub-regions from 1990 to 2015. Glacial areas in the Bogda Peak, Karlik Mountain, Yinsugaiti Glacier, and Youyi Peak sub-regions in the period of 1990–2015 decreased by 57.7, 369.1, 369.1, and 170.4 km², respectively. Analysis of glacier area center of gravity showed that quadrant changes of glacier areas in the 4 sub-regions moved towards the origin. Glacier area on the south aspect of the Karlik Mountain sub-region was larger than that on the north aspect, while glacier areas on the north aspect of the other 3 sub-regions were larger than those on the south aspect. Increased precipitation in the Karlik Mountain sub-region inhibited the retreat of glaciers to a certain extent. However, glacier area changes in the Bogda Peak and Youyi Peak sub-regions were not sensitive to the increased precipitation. On a seasonal time scale, glacier area changes in the Bogda Peak, Karlik Mountain, Yinsugaiti Glacier, and Youyi Peak sub-regions were mainly caused by accumulated temperature in the wet season; on an annual time scale, the correlation coefficient between glacier area and annual average temperature was –0.72 and passed the significance test at P<0.05 level in the Karlik Mountain sub-region. The findings of this study can provide a scientific basis for water resources management in the arid and semi-arid regions of Northwest China in the context of global warming.

  • Hierarchical responses of soil organic and inorganic carbon dynamics to soil acidification in a dryland agroecosystem, China

    分类: 地球科学 >> 地球科学史 提交时间: 2018-09-18 合作期刊: 《干旱区科学》

    摘要: Soil acidification is a major global issue of sustainable development for ecosystems. The increasing soil acidity induced by excessive nitrogen (N) fertilization in farmlands has profoundly impacted the soil carbon dynamics. However, the way in which changes in soil pH regulating the soil carbon dynamics in a deep soil profile is still not well elucidated. In this study, through a 12-year field N fertilization experiment with three N fertilizer treatments (0, 120, and 240 kg N/(hm2•a)) in a dryland agroecosystem of China, we explored the soil pH changes over a soil profile up to a depth of 200 cm and determined the responses of soil organic carbon (SOC) and soil inorganic carbon (SIC) to the changed soil pH. Using a generalized additive model, we identified the soil depth intervals with the most powerful statistical relationships between changes in soil pH and soil carbon dynamics. Hierarchical responses of SOC and SIC dynamics to soil acidification were found. The results indicate that the changes in soil pH explained the SOC dynamics well by using a non-linear relationship at the soil depth of 0–80 cm (P=0.006), whereas the changes in soil pH were significantly linearly correlated with SIC dynamics at the 100–180 cm soil depth (P=0.015). After a long-term N fertilization in the experimental field, the soil pH value decreased in all three N fertilizer treatments. Furthermore, the declines in soil pH in the deep soil layer (100–200 cm) were significantly greater (P=0.035) than those in the upper soil layer (0–80 cm). These results indicate that soil acidification in the upper soil layer can transfer excess protons to the deep soil layer, and subsequently, the structural heterogeneous responses of SOC and SIC to soil acidification were identified because of different buffer capacities for the SOC and SIC. To better estimate the effects of soil acidification on soil carbon dynamics, we suggest that future investigations for soil acidification should be extended to a deeper soil depth, e.g., 200 cm.