Abstract:
The service degradation and life assessment of key components in light water reactor nuclear power
plants (NPPs) mainly depend on the accumulation of service property data of component materials, understanding of environmental degradation mechanism, and construction of evaluation models or methods. The current ASME design fatigue code does not take full account of the interactions of environmental, loading and material's factors. In the present work, based on the corrosion fatigue tests in simulated NPPs' high temperature pressurized water, the environmental fatigue behavior and dominant mechanism of nuclear-grade low alloy steel have been investigated. A design fatigue model was constructed by taking environmentally assisted fatigue effects into account and the corresponding design curves were given for the convenience of engineering applications. The process for environmental fatigue safety assessment of NPPs' components was proposed, based on which some tentative assessment cases have been given.