注册 登录
EN | CN
  • 首页
  • 论文提交
  • 论文浏览
  • 论文检索
  • 个人中心
  • 帮助
按提交时间
  • 1
  • 1
按主题分类
  • 1
  • 1
  • 1
按作者
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
按机构
  • 1
  • 1
  • 1
当前资源共 2条
隐藏摘要 点击量 时间 下载量
  • 1. ChinaXiv:201804.02187
    下载全文

    基于特征加权的代理判别模型模式识别方法

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2018-04-17 合作期刊: 《计算机应用研究》

    潘海洋 郑近德 郭雨怡

    摘要: 针对以往模式识别方法的不足及特征值贡献度的问题,提出了基于特征加权的代理判别模型(agent discriminate model based feature weighted,ADMFW)模式识别方法。该方法的核心在于利用加权因子获取加权特征,并采用代理模型建立加权特征之间的关系函数,即首先计算特征值的权值因子,评估特征值的显著度,进而对每个特征值予以权值;然后利用加权特征和代理模型建立预测模型;最后采用预测模型对未知样本进行识别诊断。对滚动轴承实测数据的分析结果表明,ADMFW可以有效地对滚动轴承的工作状态和故障类型进行识别。

    通过
     点击量 2565  下载量 1245  评论 0
  • 2. ChinaXiv:201801.00001
    下载全文

    多属性卷积神经网络及其在轴承故障诊断中的应用

    分类: 机械工程 >> 机械工程其他学科 分类: 计算机科学 >> 计算机应用技术 提交时间: 2017-12-26

    单建华 吕钦 张神林 郑近德 王孝义

    摘要: 现有轴承故障诊断方法存在不足:传统方法数学计算复杂,诊断效果不佳,且一般只诊断故障位置,难以诊断载荷及故障大小。现有的利用卷积神经网络的方法,使用传统卷积神经网络,一个网络只能输出一个属性,不能同时诊断多个属性,为了同时诊断故障位置、故障大小及载荷,首次提出了一种多属性卷积神经网络,并应用于轴承故障诊断,直接利用一维振动信号对多属性卷积神经网络进行训练。优势在于克服了传统方法的缺点:能获得故障属性任意组合的诊断结果,网络参数更少,方法简洁,泛化能力强,准确率高。采用西储大学的轴承数据,进行了一系列测试,表明本文方法能准确地诊断轴承故障的多个属性,准确率高,同时有很好的泛化能力。

    同行评议状态:待评议

     点击量 5855  下载量 2914  评论 0
友情链接 : PubScholar 哲学社会科学预印本
  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募预印本评审专家 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备110402500046号
版权所有© 2016 中国科学院文献情报中心