注册 登录
EN | CN
  • 首页
  • 论文提交
  • 论文浏览
  • 论文检索
  • 个人中心
  • 帮助
按提交时间
  • 1
按主题分类
  • 1
按作者
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
按机构
  • 1
  • 1
  • 1
  • 1
  • 1
当前资源共 1条
隐藏摘要 点击量 时间 下载量
  • 1. ChinaXiv:202505.00041
    下载全文

    Machine learning-based forecasting of fission gas release in liquid metal-cooled reactor

    分类: 物理学 >> 核物理学 提交时间: 2025-04-26

    Li, Mr. Junfeng Yang, Mr. Jiawei Wang, Mr. Mou Zhao, Dr. Pengcheng Wang, Mr. Da Yokoyama, Dr. Ryo WANG, Dr. KAI Zhang, Dr. Guangwei Zhou, Dr. Wenzhong Zhou, Mr. Lijun

    摘要: In this paper, we propose an artificial intelligence (AI)-driven framework for predicting fission gas release (FGR) in liquid metal-cooled reactors. Three AI models are trained on a comprehensive FGR database comprising 10,065 data points generated from multi-physics simulations. The results reveal that Random Forest (RF) achieves superior prediction accuracy, with a mean error (ME) of 3.96% for the optimal parameter combination (p_lin0, a_grain0, po, and t). While RF excels in database predictions, the Transformer model demonstrates exceptional capability in capturing parameter-effect trends, such as the positive correlation between FGR and fuel linear power or time. This study underscores the potential of AI models, particularly RF and Transformer, in advancing FGR forecasting for reactor safety analysis. This work can provide a replicable methodological paradigm for the FGR prediction of nuclear reactors and reliable technical support for the safety margin assessment of liquid metal-cooled reactors.

    同行评议状态:待评议

     点击量 325  下载量 108  评论 0
友情链接 : PubScholar 哲学社会科学预印本
  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募预印本评审专家 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备110402500046号
版权所有© 2016 中国科学院文献情报中心