• Global Dryland Ecosystem Programme (G-DEP): Africa consultative meeting report

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: In order to enhance and restore the ecosystems of natural capital in African arid regions, the Global Dryland Ecosystem Programme (G-DEP) consultative meeting was hosted in Dakar, Senegal, from 23 to 25 September 2019. This paper details the first African meeting of the G-DEP. Consultative meeting reviewed preceding dryland ecosystems case studies, identified vulnerable arid and semi-arid regions, and proposed sustainable solutions to problems. It also identified the successes and failures of previous attempts to improve vulnerable ecosystems and ultimately formed an action plan to improve these attempts. Climate, ecosystems, and livelihoods for Sustainable Development Goals (SDGs), Great Green Wall Initiative (GGWI) for Sahara and Sahel, and China-Africa cooperation on science, technology, and innovation are three extra main sections concerned of the meeting. Separately, more specific topics as the complicated relationship between these natural processes and human activity, including pastoralism, soil restoration, and vegetation regenerate techniques, were fully discussed. Consultative meeting also identified the positive effects international collaboration can have on dryland regions, specifically in the capacity of sharing information, technology, and innovation on purpose to develop a joint proposal for long-term research programs in African arid and semi-arid areas. Moreover, meetings that review the progress made on ecosystem management for the sustainable livelihoods in Africa, identification of priority areas, and the development and implementation of ecosystem programs for proper research and collaboration in African arid and semi-arid zones, have been proposed as strategic recommendations to enhance the global partnership for sustainable development. Furthermore, as the outcomes of the workshop, there are three steps proposed to handle African dryland climate changes, several aspects suggested to solve current dilemmas of the GGWI, and a series of actions recommended for G-DEP related activities in Africa.

  • Direct Light Orbital Angular Momentum Detection in Mid-Infrared based on Type-II Weyl Semimetal TaIrTe4

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The capability of direct photocurrent detection of orbital angular momentum (OAM) of light has recently been realized with topological Weyl semimetal, but limited to near infrared wavelength range. The extension of direct OAM detection to midinfrared, a wavelength range that plays important role in a vast range of applications, such as autonomous driving, night vision and motion detection, is challenging and has not yet been realized. This is because most studies of photocurrent responses are not sensitive to the phase information and the photo response is usually very poor in the mid-infrared. In this study, we designed a photodetector based on Type-II Weyl semimetal tantalum iridium tellurides with designed electrode geometries for direct detection of the topological charge of OAM through orbital photogalvanic effect. Our results indicate helical phase gradient of light can be distinguished by a current winding around the optical beam axis with a magnitude proportional to its quantized OAM mode number. The topological enhanced response at mid-infrared of TaIrTe4 further help overcome the low responsivity issues and finally render the direct orbital angular momentum detection capability in mid-infrared. Our study enables on-chip integrated OAM detection, and thus OAM sensitive focal plane arrays in mid-infrared. Such capability triggers new route to explore applications of light carrying OAM, especially that it can crucially promote the performance of many mid-infrared imaging related applications, such as intricate target recognition and night vision.

  • Probing material absorption and optical nonlinearity of integrated photonic materials

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Optical microresonators with high quality ($Q$) factors are essential to a wide range of integrated photonic devices. Steady efforts have been directed towards increasing microresonator $Q$ factors across a variety of platforms. With success in reducing microfabrication process-related optical loss as a limitation of $Q$, the ultimate attainable $Q$, as determined solely by the constituent microresonator material absorption, has come into focus. Here, we report measurements of the material-limited $Q$ factors in several photonic material platforms. High-$Q$ microresonators are fabricated from thin films of SiO$_2$, Si$_3$N$_4$, Al$_{0.2}$Ga$_{0.8}$As and Ta$_2$O$_5$. By using cavity-enhanced photothermal spectroscopy, the material-limited $Q$ is determined. The method simultaneously measures the Kerr nonlinearity in each material and reveals how material nonlinearity and ultimate $Q$ vary in a complementary fashion across photonic materials. Besides guiding microresonator design and material development in four material platforms, the results help establish performance limits in future photonic integrated systems.