• Deep space communication channel characteristics under solar scintillation

    分类: 地球科学 >> 空间物理学 提交时间: 2017-03-10

    摘要: Electromagnetic waves used for deep space communications are mainly affected by the charged particles ejected by the sun. These effects may result in degradation of communication quality or communication interruption. This paper discusses the effects of solar scintillation on electro-magnetic waves, including the scintillation index which is a measure of the intensity scintillation, the coherence bandwidth and the coherence time of deep space communication channel. The deep space communication channel under solar scintillation is modeled by using Rician fading channel according to the scintillation index. The coherence bandwidth will determine whether the channel is flat fading or frequency selective fading and the coherence time will determine whether the channel is slow fading or fast fading. The approach of choosing signal band width is determined by the coherence bandwidth and the coherence time with the change of the solar elongation angle. The simulation results show the bit error rate of the signal bandwidth chosen by the proposed approach is lower than a random choice.

  • Transitional Area of Ce4+ to Ce3+ in SmxCayCe1-x-yO2-δ with Various Doping and Oxygen Vacancy Concentrations: A GGA + U Study

    分类: 化学 >> 物理化学 提交时间: 2017-11-05 合作期刊: 《结构化学》

    摘要: In this work, we perform DFT + U periodic calculations to study geometrical and electronic structures and oxygen vacancy formation energies of SmxCayCe1-x-yO2-δ systems (x = 0.0312, 0.0625, 0.125 and 0.250; y = 0.0312, 0.0625, 0.125 and 0.250; δ = 0.0312, 0.0625, 0.125, 0.250 and 0.50) with different oxygen vacancy and doping concentrations. The calculated results show that the V1-Sm3+-V2 structures where there is a position relationship of the face diagonal between V1 and V2 both nearest to Sm3+ have the lowest energy configurations. The study on electronic structures of the SmxCayCe1-x-yO2-δ systems finds that excess electrons arise from oxygen vacancies and are localized on f-level traps of their neighbor Ce, and Ca2+ and Sm3+ co-doping effectively restrains the reduction of Ce4+. In order to avoid the existence of Ce3+, x and y must be both larger than 0.0625 as δ = 0.125 or δ must be smaller than 0.125 as x = y = 0.0625. The Ce3+/Ce4+ change ratio k has an obvious monotonous increase with increasing the vacancy oxygen concentration. The introduction of Sm3+ decreases k. In addition, the doped Sm3+ can restrain the reduction of Ce4+ when the V1-Sm3+-V2 structure with a face diagonal position relationship in lower reduced atmosphere exists. It need be pointed out that the Sm0.25Ce0.75O1.5 system should be thought of as a Sm-doped Ce2O3 one.

  • Effects of formaldehyde exposure on anxiety-like and depression-like behavior, cognition, central levels of glucocorticoid receptor and tyrosine hydroxylase in mice

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-05

    摘要: Formaldehyde exposure is toxic to the brains of mammals, but the mechanism remains unclear. We investigated the effects of inhaled formaldehyde on anxiety, depression, cognitive capacity and central levels of glucocorticoid receptor and tyrosine hydroxylase in mice. After exposure to 0, 1 or 2 ppm gaseous formaldehyde for one week, we measured anxiety-like behavior using open field and elevated plus-maze tests, depression-like behavior using a forced swimming test, learning and memory using novel object recognition tests, levels of glucocorticoid receptors in the hippocampus and tyrosine hydroxylase in the Arc, MPOA, ZI and VTA using immuhistochemistry. We found that inhalation of 1 ppm formaldehyde reduced levels of anxiety-like behavior. Inhalation of 2 ppm formaldehyde reduced body weight, but increased levels of depression-like behavior, impaired novel object recognition, and lowered the numbers of glucocorticoid receptor immonureactive neurons in the hippocampus and tyrosine hydroxylase immonureactive neurons in the ventral tegmental area and the zona incerta, medial preoptic area. Different concentrations of gaseous formaldehyde result in different effects on anxiety, depression-like behavior and cognition ability which may be associated with alterations in hippocampal glucocorticoid receptors and brain tyrosine hydroxylase levels. (C) 2015 Elsevier Ltd. All rights reserved.