您选择的条件: Liu Xiaojing
  • An efficient parallel algorithm of variational nodal method\\for heterogenous neutron transport problems

    分类: 核科学技术 >> 核科学与技术 提交时间: 2024-02-13

    摘要: The heterogeneous variational nodal method (HVNM) has emerged as a potential approach for solving high-fidelity neutron transport problems. However, achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs. This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard. The algorithm evenly distributes the response matrix sets among processors during the matrix formation process, thus enabling independent construction without communication. Once the formation tasks are completed, a collective operation merges and shares the matrix sets among the processors. For the solution process, the problem domain is decomposed into subdomains assigned to specific processors, and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation. Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries. The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases. Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations. The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%, respectively, for the 3D KAIST problem and the 3D JRR-3 problem. In addition, the parallel algorithm significantly reduces computation time, with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.

  • Dynamic evaluation of a scaled-down heat pipe-cooled system during start-up/shut-down processes using a hardware-in-the-loop test approach

    分类: 物理学 >> 核物理学 提交时间: 2023-10-06

    摘要: Micro mobile heat pipe-cooled nuclear power plants are promising candidates for distributed energy resource power generators and can be flexibly deployed in remote places to meet increasing electric power demands. However, previous steady-state simulations and experiments have deviated significantly from actual micronuclear system operations. Hence, a transient analysis is required for performance optimization and safety assessment. In this study, a hardware-in-the-loop (HIL) approach was used to investigate the dynamic behavior of scaled-down heat pipe-cooled systems. The real-time features of the HIL architecture were interpreted and validated, and an optimal time step of 500 ms was selected for the thermal transient. The power transient was modeled using point kinetic equations, and a scaled-down thermHeal prototype was set up to avoid modeling unpredictable heat transfer behaviors and feeding temperature samples into the main program running on a desktop PC. A series of dynamic test results showed significant power and temperature oscillations during the transient process, owing to the inconsistency of the rapid nuclear reaction rate and large thermal inertia. The proposed HIL approach is stable and effective for further studying of the dynamic characteristics and control optimization of solid-state small nuclear-powered systems at an early prototyping stage.