您当前的位置: > 详细浏览

Machine learning the apparent diffusion coefficient of Se(IV) in compacted bentonite

请选择邀稿期刊:
摘要: Light Gradient Boosting Machine (LightGBM) and Random Forest (RF) algorithms were used to predict the apparent diffusion coefficient of Se(IV) in compacted bentonite. Seven instances of Se(IV) were measured using through-diffusion method. LightGBM (R2 = 0.98 and RMSE = 0.025) exhibited superior predictive accuracy with a training dataset consisting of 956 instances and eight input features from Japan Atomic Energy Agency (JAEA-DDB). Shapley Additive Explanation and Partial Dependence Plots analyses revealed valuable insights into the diffusion mechanism of adsorbed anion obtained by evaluating the relationships between the apparent diffusion coefficient and the dependency of each input feature.

版本历史

[V2] 2024-10-24 10:55:19 ChinaXiv:202405.00253V2 下载全文
[V1] 2024-05-22 10:57:59 ChinaXiv:202405.00253v1 查看此版本 下载全文
点击下载全文
预览
同行评议状态
待评议
许可声明
metrics指标
  •  点击量2768
  •  下载量914
评论
分享