按提交时间
按主题分类
按作者
按机构
  • Characteristics of daily extreme wind gusts on the Qinghai-Tibet Plateau, China

    分类: 地球科学 >> 地球科学史 提交时间: 2018-09-17 合作期刊: 《干旱区科学》

    摘要: Severe wind is a major natural hazard and a main driver of desertification on the Qinghai-Tibet Plateau. Generally, studies of Qinghai-Tibet Plateau's wind climatology focus on mean wind speeds and its gust speeds have been seldom investigated. Here, we used observed daily maximum gust speeds from a 95-station network over a 5-year period (2008–2012) to analyze the characteristics of extreme wind speeds and directions by fitting Weibull and Gumbel distributions. The results indicated the spatial distribution of extreme wind speeds and their direction on the Qinghai-Tibet Plateau is highly variable, with its western portion prone to greater mean speeds of extreme wind gusts than its eastern portion. Maximum extreme wind speeds of 30.9, 33.0, and 32.2 m/s were recorded at three stations along the Qinghai Tibet Railway. Severe winds occurred mostly from November to April, caused primarily by the westerly jet stream. Terrain greatly enhances the wind speeds. Our spatial analysis of wind speed data showed that the wind speeds increased exponentially with an increasing altitude. We also assessed the local wind hazard by calculating the return periods of maximum wind gusts from the observational data based on the statistical extreme value distributions of these wind speeds. Further attention should be given to those stations where the yearly maximum daily extreme wind speed increased at a rate greater than that of mean value of daily extreme wind speeds. Severe extreme wind events in these regions of the plateau are likely to become more frequent. Consequently, building structural designers working in these areas should use updated extreme wind data rather than relying on past data alone.

  • Quantitative analysis of factors driving the variations in snow cover fraction in the Qilian Mountains, China

    分类: 地球科学 >> 地理学 提交时间: 2025-07-17 合作期刊: 《干旱区科学》

    摘要: Understanding the impact of meteorological and topographical factors on snow cover fraction (SCF) is crucial for water resource management in the Qilian Mountains (QLM), China. However, there is still a lack of adequate quantitative analysis of the impact of these factors. This study investigated the spatiotemporal characteristics and trends of SCF in the QLM based on the cloud-removed Moderate Resolution Imaging Spectroradiometer (MODIS) SCF dataset during 2000–2021 and conducted a quantitative analysis of the drivers using a histogram-based gradient boosting regression tree (HGBRT) model. The results indicated that the monthly distribution of SCF exhibited a bimodal pattern. The SCF showed a pattern of higher values in the western regions and lower values in the eastern regions. Overall, the SCF showed a decreasing trend during 2000–2021. The decrease in SCF occurred at higher elevations, while an increase was observed at lower elevations. At the annual scale, the SCF showed a downward trend in the western regions affected by westerly (52.84% of the QLM). However, the opposite trend was observed in the eastern regions affected by monsoon (45.73% of the QLM). The SCF displayed broadly similar spatial patterns in autumn and winter, with a significant decrease in the western regions and a slight increase in the central and eastern regions. The effect of spring SCF on spring surface runoff was more pronounced than that of winter SCF. Furthermore, compared with meteorological factors, a variation of 46.53% in spring surface runoff can be attributed to changes in spring SCF. At the annual scale, temperature and relative humidity were the most important drivers of SCF change. An increase in temperature exceeding 0.04°C/a was observed to result in a decline in SCF, with a maximum decrease of 0.22%/a. An increase in relative humidity of more than 0.02%/a stabilized the rise in SCF (about 0.06%/a). The impacts of slope and aspect were found to be minimal. At the seasonal scale, the primary factors impacting SCF change varied. In spring, precipitation and wind speed emerged as the primary drivers. In autumn, precipitation and temperature were identified as the primary drivers. In winter, relative humidity and precipitation were the most important drivers. In contrast to the other seasons, slope exerted the strongest influence on SCF change in summer. This study facilitates a detailed quantitative description of SCF change in the QLM, enhancing the effectiveness of watershed water resource management and ecological conservation efforts in this region.