按提交时间
按主题分类
按作者
按机构
  • Turbulence compressibility reduction with helicity

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Numerical test of isotropic turbulence compressibility reduction with helicity in a cyclic box is performed. The ratios of compressibility-relevant-mode spectra over those of kinetic energy present power laws at large wavenumbers in the dissipation range, indicating a common difference of $11/15$ in the exponents of the algebraic prefactor of the nonhelical power spectra over those of helical ones. Our results being not derived from the shapes of the spectra themselves, the implied information about the helicity effect on the complex singularities of the discretized dynamical system can still be of reasonable value for insights of the Navier-Stokes equation, although the high-order finite difference scheme used for computation may not be as accurate in dissipation range as the state-of-the-art of incompressible turbulence with pseudo-spectral method. Possible applications in controlling flows, for the purposes of, say, decreasing turbulence noise, are also discussed according to the spectral fluctuations.

  • Turbulence compressibility reduction with helicity

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Numerical test of isotropic turbulence compressibility reduction with helicity in a cyclic box is performed. The ratios of compressibility-relevant-mode spectra over those of kinetic energy present power laws at large wavenumbers in the dissipation range, indicating a common difference of $11/15$ in the exponents of the algebraic prefactor of the nonhelical power spectra over those of helical ones. Our results being not derived from the shapes of the spectra themselves, the implied information about the helicity effect on the complex singularities of the discretized dynamical system can still be of reasonable value for insights of the Navier-Stokes equation, although the high-order finite difference scheme used for computation may not be as accurate in dissipation range as the state-of-the-art of incompressible turbulence with pseudo-spectral method. Possible applications in controlling flows, for the purposes of, say, decreasing turbulence noise, are also discussed according to the spectral fluctuations.

  • Rotating Massive Strangeon Stars and X-Ray Plateau of Short GRBs

    分类: 天文学 >> 天文学 提交时间: 2024-03-29 合作期刊: 《Research in Astronomy and Astrophysics》

    摘要: Strangeon stars, which are proposed to describe the nature of pulsar-like compact stars, have passed various observational tests. The maximum mass of a non-rotating strangeon star could be high, which implies that the remnants of binary strangeon star mergers could even be long-lived massive strangeon stars. We study rigidly rotating strangeon stars in the slowly rotating approximation, using the Lennard-Jones model for the equation of state. Rotation can significantly increase the maximum mass of strangeon stars with unchanged baryon numbers, enlarging the mass-range of long-lived strangeon stars. During spin-down after merger, the decrease of radius of the remnant will lead to the release of gravitational energy. Taking into account the efficiency of converting the gravitational energy luminosity to the observed X-ray luminosity, we find that the gravitational energy could provide an alternative energy source for the plateau emission of X-ray afterglow. The fitting results of X-ray plateau emission of some short gamma-ray bursts suggest that the magnetic dipole field strength of the remnants can be much smaller than that of expected when the plateau emission is powered only by spin-down luminosity of magnetars.

  • The Application of Permanent Magnet Synchronous Motor with Small Electrical Time Constant in Fiber Positioner

    分类: 物理学 >> 地球物理学、天文学和天体物理学 提交时间: 2024-02-01 合作期刊: 《Research in Astronomy and Astrophysics》

    摘要: With the development of cutting-edge multi-object spectrographs, fiber positioners located in the focal plane are being scaled down in size, and miniature hollow-cup Permanent Magnet motors are now being considered as a suitable replacement for Faulhaber Precistep stepper motors. However, the small electrical time constant of such coreless motors poses a challenge, as the problem of severe commutation torque ripple in a fiber positioner running a position loop has been tricky. To overcome this challenge, it is advised to increase the Pulse Width Modulation (PWM) frequency as much as possible to mitigate the effects of the current fluctuation. This must be done while ensuring adequate resolution of the PWM generator. By employing a voltage open-loop field-oriented control based on a modulation frequency of 1 MHz, the drive current only costs 25 mA under a 3.3 V power supply. The sine degree of phase current is immaculate, and the repeat positioning accuracy can reach 2 μm. Moreover, it is possible to further shrink the bill of devices and the layout area of the Printed Circuit Board, especially in size-sensitive applications. This device has been developed under the new generation of The Large Sky Area Multi-Object Fiber Spectroscopic Telescope.

  • Multipoint Turbulence Analysis with Helioswarm

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Exploration of plasma dynamics in space, including turbulence, is entering a new era of multi-satellite constellation measurements that will determine fundamental properties with unprecedented precision. Familiar but imprecise approximations will need to be abandoned and replaced with more advanced approaches. We present a preparatory study of the evaluation of second- and third-order statistics, using simultaneous measurements at many points. Here, for specificity, the orbital configuration of the NASA Helioswarm mission is employed in conjunction with three-dimensional magnetohydrodynamics numerical simulations of turbulence. The Helioswarm 9-spacecraft constellation flies virtually through the turbulence to compare results with the exact numerical statistics. We demonstrate novel increment-based techniques for the computation of (1) the multidimensional spectra and (2) the turbulent energy flux. This latter increment-space estimate of the cascade rate, based on the third-order Yaglom-Politano-Pouquet theory, uses numerous increment-space tetrahedra. Our investigation reveals that Helioswarm will provide crucial information on the nature of astrophysical turbulence.

  • Pressure-Strain Interaction as the Energy Dissipation Estimate in Collisionless Plasma

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The dissipative mechanism in weakly collisional plasma is a topic that pervades decades of studies without a consensus solution. We compare several energy dissipation estimates based on energy transfer processes in plasma turbulence and provide justification for the pressure-strain interaction as a direct estimate of the energy dissipation rate. The global and scale-by-scale energy balances are examined in 2.5D and 3D kinetic simulations. We show that the global internal energy increase and the temperature enhancement of each species are directly tracked by the pressure-strain interaction. The incompressive part of the pressure-strain interaction dominates over its compressive part in all simulations considered. The scale-by-scale energy balance is quantified by scale filtered Vlasov-Maxwell equations, a kinetic plasma approach, and the lag dependent von K\'arm\'an-Howarth equation, an approach based on fluid models. We find that the energy balance is exactly satisfied across all scales, but the lack of a well-defined inertial range influences the distribution of the energy budget among different terms in the inertial range. Therefore, the widespread use of the Yaglom relation to estimating dissipation rate is questionable in some cases, especially when the scale separation in the system is not clearly defined. In contrast, the pressure-strain interaction balances exactly the dissipation rate at kinetic scales regardless of the scale separation.

  • Design and prototyping of the readout electronics for the transition radiation detector in the High Energy Cosmic Radiation Detection facility

    分类: 核科学技术 >> 核探测技术与核电子学 提交时间: 2024-03-07

    摘要: The High Energy Cosmic-Radiation Detection (HERD) facility is planned to launch in 2027 and scheduled to be installed on the China Space Station. It serves as a dark matter particle detector, a cosmic ray instrument, and an observatory for high-energy gamma rays. A transition radiation detector placed on one of its lateral sides serves dual purpose, (i) calibrating HERD’s electromagnetic calorimeter in the TeV energy range, and (ii) serving as an independent detector for high-energy gamma rays. In this paper, the prototype readout electronics design of the transition radiation detector is demonstrated, which aims to accurately measure the charge of the anodes using the SAMPA application specific integrated circuit chip. The electronic performance of the prototype system is evaluated in terms of noise, linearity, and resolution. Through the presented design, each electronic channel can achieve a dynamic range of 0-100 fC, the RMS noise level not exceeding 0.15 fC, and the integral nonlinearity was less than 0.2%. To further verify the readout electronic performance, a joint test with the detector was carried out, and the results show that the prototype system can satisfy the requirements of the detector’s scientific goals.

  • Relaxation of the turbulent magnetosheath

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In turbulence, nonlinear terms drive energy transfer from large-scale eddies into small scales through the so-called energy cascade. Turbulence often relaxes toward states that minimize energy; typically these states are considered globally. However, turbulence can also relax toward local quasi-equilibrium states, creating patches or cells where the magnitude of nonlinearity is reduced and energy cascade is impaired. We show, for the first time, compelling observational evidence that this ``cellularization'' of turbulence can occur due to local relaxation in a strongly turbulent natural environment such as the Earth's magnetosheath.

  • Evolution of Spin Period and Magnetic Field of the Crab Pulsar: Decay of the Braking Index by the Particle Wind Flow Torque

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The evolutions of a neutron star's rotation and magnetic field (B-field) have remained unsolved puzzles for over half a century. We ascribe the rotational braking torques of pulsar to both components, the standard magnetic dipole radiation (MDR) and particle wind flow ( MDR + Wind, hereafter named MDRW), which we apply to the Crab pulsar (B0531 + 21), the only source with a known age and long-term continuous monitoring by radio telescope. Based on the above presumed simple spin-down torques, we obtain the exact analytic solution on the rotation evolution of the Crab pulsar, together with the related outcomes as described below: (1) unlike the constant characteristic B-field suggested by the MDR model, this value for the Crab pulsar increases by a hundred times in 50~kyr while its real B-field has no change; (2) the rotational braking index evolves from $\sim$3 to 1 in the long-term, however, it drops from 2.51 to 2.50 in $\sim$45 years at the present stage, while the particle flow contributes approximately 25% of the total rotational energy loss rate; (3) strikingly, the characteristic age has the maximum limit of $\sim$10 kyr, meaning that it is not always a good indicator of real age. Furthermore, we discussed the evolutionary path of the Crab pulsar from the MDR to the wind domination by comparing it with the possible wind braking candidate pulsar PSR J1734-3333.

  • Evolution of Spin Period and Magnetic Field of the Crab Pulsar: Decay of the Braking Index by the Particle Wind Flow Torque

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The evolutions of a neutron star's rotation and magnetic field (B-field) have remained unsolved puzzles for over half a century. We ascribe the rotational braking torques of pulsar to both components, the standard magnetic dipole radiation (MDR) and particle wind flow ( MDR + Wind, hereafter named MDRW), which we apply to the Crab pulsar (B0531 + 21), the only source with a known age and long-term continuous monitoring by radio telescope. Based on the above presumed simple spin-down torques, we obtain the exact analytic solution on the rotation evolution of the Crab pulsar, together with the related outcomes as described below: (1) unlike the constant characteristic B-field suggested by the MDR model, this value for the Crab pulsar increases by a hundred times in 50~kyr while its real B-field has no change; (2) the rotational braking index evolves from $\sim$3 to 1 in the long-term, however, it drops from 2.51 to 2.50 in $\sim$45 years at the present stage, while the particle flow contributes approximately 25% of the total rotational energy loss rate; (3) strikingly, the characteristic age has the maximum limit of $\sim$10 kyr, meaning that it is not always a good indicator of real age. Furthermore, we discussed the evolutionary path of the Crab pulsar from the MDR to the wind domination by comparing it with the possible wind braking candidate pulsar PSR J1734-3333.

  • Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The tantalizing promise of quantum computational speedup in solving certain problems has been strongly supported by recent experimental evidence from a high-fidelity 53-qubit superconducting processor1 and Gaussian boson sampling (GBS) with up to 76 detected photons. Analogous to the increasingly sophisticated Bell tests that continued to refute local hidden variable theories, quantum computational advantage tests are expected to provide increasingly compelling experimental evidence against the Extended Church-Turing thesis. In this direction, continued competition between upgraded quantum hardware and improved classical simulations is required. Here, we report a new GBS experiment that produces up to 113 detection events out of a 144-mode photonic circuit. We develop a new high-brightness and scalable quantum light source, exploring the idea of stimulated squeezed photons, which has simultaneously near-unity purity and efficiency. This GBS is programmable by tuning the phase of the input squeezed states. We demonstrate a new method to efficiently validate the samples by inferring from computationally friendly subsystems, which rules out hypotheses including distinguishable photons and thermal states. We show that our noisy GBS experiment passes the nonclassicality test using an inequality, and we reveal non-trivial genuine high-order correlation in the GBS samples, which are evidence of robustness against possible classical simulation schemes. The photonic quantum computer, Jiuzhang 2.0, yields a Hilbert space dimension up to $10^{43}$, and a sampling rate $10^{24}$ faster than using brute-force simulation on supercomputers.