• Carbon inputs regulate the temperature sensitivity of soil respiration in temperate forests

    分类: 农、林、牧、渔 >> 土壤学 提交时间: 2022-10-14 合作期刊: 《干旱区科学》

    摘要:Litter and root activities may alter the temperature sensitivity (Q10) of soil respiration. However, existing studies have not provided a comprehensive understanding of the effects of litter and root carbon inputs on the Q10 of soil respiration in different seasons. In this study, we used the trench method under in situ conditions to measure the total soil respiration (Rtotal), litter-removed soil respiration (Rno-litter), root-removed soil respiration (Rno-root), and the decomposition of soil organic matter (i.e., both litter and root removal; RSOM) in different seasons of pioneer (Populus davidiana Dode) and climax (Quercus liaotungensis Mary) forests on the Loess Plateau, China. Soil temperature, soil moisture, litter biomass, fine root biomass, litter carbon, and root carbon were analyzed to obtain the drive mechanism of the Q10 of soil respiration in the two forests. The results showed that the Q10 of soil respiration exhibited seasonality, and the Q10 of soil respiration was higher in summer. The litter enhanced the Q10 of soil respiration considerably more than the root did. Soil temperature, soil moisture, fine root biomass, and litter carbon were the main factors used to predict the Q10 of different soil respiration components. These findings indicated that factors affecting the Q10 of soil respiration highly depended on soil temperature and soil moisture as well as related litter and root traits in the two forests, which can improve our understanding of soil carbon–climate feedback in global warming. The results of this study can provide reference for exploring soil respiration under temperate forest restoration.

  • Application of the InVEST model for assessing water yield and its response to precipitation and land use in the Weihe River Basin, China

    分类: 地球科学 >> 水文学 提交时间: 2022-05-09 合作期刊: 《干旱区科学》

    摘要: Abstract: With realizing the importance of ecosystem services to society, the efforts to evaluate the ecosystem services have increased. As the largest tributary of the Yellow River, the Weihe River has been endowed with many ecological service functions. Among which, water yield can be a measure of local availability of water and an index for evaluating the conservation function of the region. This study aimed to explore the temporal and spatial variation of water yield and its influencing factors in the Weihe River Basin (WRB), and provide basis for formulating reasonable water resources utilization schemes. Based on the InVEST (integrated valuation of ecosystem services and tradeoffs) model, this study simulated the water yield in the WRB from 1985 to 2019, and discussed the impacts of climatic factors and land use change on water yield by spatial autocorrelation analysis and scenario analysis methods. The results showed that there was a slight increasing trend in water yield in the WRB over the study period with the increasing rate of 4.84 mm/10a and an average depth of 83.14 mm. The main water-producing areas were concentrated along the mainstream of the Weihe River and in the southern basin. Changes in water yield were comprehensively affected by climate and underlying surface factors. Precipitation was the main factor affecting water yield, which was consistent with water yield in time. And there existed significant spatial agglomeration between water yield and precipitation. Land use had little impact on the amount of water yield, but had an impact on its spatial distribution. Water yield was higher in areas with wide distribution of construction land and grassland. Water yield of different land use types were different. Unused land showed the largest water yield capacity, whereas grassland and farmland contributed most to the total water yield. The increasing water yield in the basin indicates an enhanced water supply service function of the ecosystem. These results are of great significance to the water resources management of the WRB.