您选择的条件: CHEN Li
  • Temperature and symmetry energy of neutron-rich fragments in the 1A GeV 124,136Xe+Pb reactions

    分类: 物理学 >> 核物理学 提交时间: 2023-06-18 合作期刊: 《Nuclear Science and Techniques》

    摘要: In this work we study the symmetry-energy coefficient of neutron-rich nuclei, and the temperature dependence of nuclear symmetry energy at low temperatures. An isobaric method is used to extract the symmetry-energy coefficients of neutron-rich nucleus (asym) at zero temperature (T) and asym/T at nonzero temperature in the measured 1A GeV 124,136Xe+Pb reactions. T of fragment is obtained from the ratio of its asym to asym/T. The results show that, for fragment with the same neutron-excess (I=N‒Z), the heavier the fragment is, the higher T it has, and T tends to saturate around 1 MeV for the large mass fragments. It is also shown that the more neutron-rich the isobar is, the higher temperature it has. The T2 dependence of symmetry energy of finite nucleus at low temperatures is verified by the extracted results.

  • Projections of temperature extremes based on preferred CMIP5 models: a case study in the Kaidu-Kongqi River basin in Northwest China

    分类: 地球科学 >> 地理学 提交时间: 2021-07-23 合作期刊: 《干旱区科学》

    摘要: The extreme temperature has more outstanding impact on ecology and water resources in arid regions than the average temperature. Using the downscaled daily temperature data from 21 Coupled Model Inter-comparison Project (CMIP) models of NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) and the observation data, this paper analyzed the changes in temporal and spatiotemporal variation of temperature extremes, i.e., the maximum temperature (Tmax) and minimum temperature (Tmin), in the Kaidu-Kongqi River basin in Northwest China over the period 2020–2050 based on the evaluation of preferred Multi-Model Ensemble (MME). Results showed that the Partial Least Square ensemble mean participated by Preferred Models (PM-PLS) was better representing the temporal change and spatial distribution of temperature extremes during 1961–2005 and was chosen to project the future change. In 2020–2050, the increasing rate of Tmax (Tmin) under RCP (Representative Concentration Pathway) 8.5 will be 2.0 (1.6) times that under RCP4.5, and that of Tmin will be larger than that of Tmax under each corresponding RCP. Tmin will keep contributing more to global warming than Tmax. The spatial distribution characteristics of Tmax and Tmin under the two RCPs will overall the same; but compared to the baseline period (1986–2005), the increments of Tmax and Tmin in plain area will be larger than those in mountainous area. With the emission concentration increased, however, the response of Tmax in mountainous area will be more sensitive than that in plain area, and that of Tmin will be equivalently sensitive in mountainous area and plain area. The impacts induced by Tmin will be universal and far-reaching. Results of spatiotemporal variation of temperature extremes indicate that large increases in the magnitude of warming in the basin may occur in the future. The projections can provide the scientific basis for water and land plan management and disaster prevention and mitigation in the inland river basin.