• Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China

    分类: 地球科学 >> 地理学 提交时间: 2021-09-08 合作期刊: 《干旱区科学》

    摘要: As the largest inland river basin of China, the Tarim River Basin (TRB), known for its various natural resources and fragile environment, has an increased risk of ecological crisis due to the intensive exploitation and utilization of water and land resources. Since the Ecological Water Diversion Project (EWDP), which was implemented in 2001 to save endangered desert vegetation, there has been growing evidence of ecological improvement in local regions, but few studies have performed a comprehensive ecological vulnerability assessment of the whole TRB. This study established an evaluation framework integrating the analytic hierarchy process (AHP) and entropy method to estimate the ecological vulnerability of the TRB covering climatic, ecological, and socioeconomic indicators during 2000–2017. Based on the geographical detector model, the importance of ten driving factors on the spatial-temporal variations of ecological vulnerability was explored. The results showed that the ecosystem of the TRB was fragile, with more than half of the area (57.27%) dominated by very heavy and heavy grades of ecological vulnerability, and 28.40% of the area had potential and light grades of ecological vulnerability. The light grade of ecological vulnerability was distributed in the northern regions (Aksu River and Weigan River catchments) and western regions (Kashgar River and Yarkant River catchments), while the heavy grade was located in the southern regions (Kunlun Mountains and Qarqan River catchments) and the Mainstream catchment. The ecosystems in the western and northern regions were less vulnerable than those in the southern and eastern regions. From 2000 to 2017, the overall improvement in ecological vulnerability in the whole TRB showed that the areas with great ecological improvement increased by 46.11%, while the areas with ecological degradation decreased by 9.64%. The vegetation cover and potential evapotranspiration (PET) were the obvious driving factors, explaining 57.56% and 21.55% of the changes in ecological vulnerability across the TRB, respectively. In terms of ecological vulnerability grade changes, obvious spatial differences were observed in the upper, middle, and lower reaches of the TRB due to the different vegetation and hydrothermal conditions. The alpine source region of the TRB showed obvious ecological improvement due to increased precipitation and temperature, but the alpine meadow of the Kaidu River catchment in the Middle Tianshan Mountains experienced degradation associated with overgrazing and local drought. The improved agricultural management technologies had positive effects on farmland ecological improvement, while the desert vegetation in oasis-desert ecotones showed a decreasing trend as a result of cropland reclamation and intensive drought. The desert riparian vegetation in the lower reaches of the Tarim River was greatly improved due to the implementation of the EWDP, which has been active for tens of years. These results provide comprehensive knowledge about ecological processes and mechanisms in the whole TRB and help to develop environmental restoration measures based on different ecological vulnerability grades in each sub-catchment.

  • Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China

    分类: 地球科学 >> 地理学 提交时间: 2021-09-08 合作期刊: 《干旱区科学》

    摘要: As the largest inland river basin of China, the Tarim River Basin (TRB), known for its various natural resources and fragile environment, has an increased risk of ecological crisis due to the intensive exploitation and utilization of water and land resources. Since the Ecological Water Diversion Project (EWDP), which was implemented in 2001 to save endangered desert vegetation, there has been growing evidence of ecological improvement in local regions, but few studies have performed a comprehensive ecological vulnerability assessment of the whole TRB. This study established an evaluation framework integrating the analytic hierarchy process (AHP) and entropy method to estimate the ecological vulnerability of the TRB covering climatic, ecological, and socioeconomic indicators during 2000–2017. Based on the geographical detector model, the importance of ten driving factors on the spatial-temporal variations of ecological vulnerability was explored. The results showed that the ecosystem of the TRB was fragile, with more than half of the area (57.27%) dominated by very heavy and heavy grades of ecological vulnerability, and 28.40% of the area had potential and light grades of ecological vulnerability. The light grade of ecological vulnerability was distributed in the northern regions (Aksu River and Weigan River catchments) and western regions (Kashgar River and Yarkant River catchments), while the heavy grade was located in the southern regions (Kunlun Mountains and Qarqan River catchments) and the Mainstream catchment. The ecosystems in the western and northern regions were less vulnerable than those in the southern and eastern regions. From 2000 to 2017, the overall improvement in ecological vulnerability in the whole TRB showed that the areas with great ecological improvement increased by 46.11%, while the areas with ecological degradation decreased by 9.64%. The vegetation cover and potential evapotranspiration (PET) were the obvious driving factors, explaining 57.56% and 21.55% of the changes in ecological vulnerability across the TRB, respectively. In terms of ecological vulnerability grade changes, obvious spatial differences were observed in the upper, middle, and lower reaches of the TRB due to the different vegetation and hydrothermal conditions. The alpine source region of the TRB showed obvious ecological improvement due to increased precipitation and temperature, but the alpine meadow of the Kaidu River catchment in the Middle Tianshan Mountains experienced degradation associated with overgrazing and local drought. The improved agricultural management technologies had positive effects on farmland ecological improvement, while the desert vegetation in oasis-desert ecotones showed a decreasing trend as a result of cropland reclamation and intensive drought. The desert riparian vegetation in the lower reaches of the Tarim River was greatly improved due to the implementation of the EWDP, which has been active for tens of years. These results provide comprehensive knowledge about ecological processes and mechanisms in the whole TRB and help to develop environmental restoration measures based on different ecological vulnerability grades in each sub-catchment.

  • Normalized Glandular Dose Coefficients for Digital Breast Tomosynthesis with the Chinese Detailed Breast Models

    分类: 核科学技术 >> 辐射防护技术 提交时间: 2023-11-20

    摘要: Objective: The increasing incidence of breast cancer among Chinese women has necessitated the utilization of breast X-ray screening, which carries radiation risk. This work aims to provide a dosimetry protocol for the Chinese female population, to replace the traditional standard that utilize simplified breast models, for the accurate estimation of patients mean glandular dose undergoing digital breast tomosynthesis (DBT).Approach: We have constructed the first set of Chinese female detailed breast models with their representative breast parameters. Considering the backscatter radiation and computational efficiency, we improved the combination of these models and the Chinese reference adult female whole-body voxel phantom. The image acquisition for four commercial DBT systems, which are widely employed in China, were simulated using the Monte Carlo method to obtain the normalized glandular dose coefficients of DBT (D_gN^DBT) and glandular depth dose (Dgdepz ) for different breast characteristics and X-ray spectra.Main results: We calculated a series of D_gN^DBT for breasts with different percentage mass glandularity (5%, 25%, 50%, 75%, and 100%) and compressed breast thicknesses (2cm, 3cm, 4cm, 5cm, 6cm, 7cm), at various tube potentials (25kV, 28kV, 30kV, 32kV, 35kV, and 49kV) and target/filter combinations (W/Rh, W/Al, Mo/Mo, Rh/Rh, Rh/Ag). The parameter dependence of breast characteristics and beam conditions on D_gN^DBT of detailed breast models were investigated. The D_gN^DBTresults were 14.6% - 51.0% lower than those of the traditional dosimetry standard in China. The difference inD_gN^DBT was mainly due to the decrease in the depth of the main energy deposition area caused by glandular distribution along the depth direction.Significance: The results obtained in this work could be employed for the improvement of breast dosimetry in China, and provide more detailed information about risk assessment undergoing DBT.

  • THUDosePD: a three-dimensional Monte Carlo platform for phantom dose assessment

    分类: 物理学 >> 核物理学 提交时间: 2023-10-23

    摘要: Monte Carlo simulations are frequently utilized in radiation dose assessments. However, many researchers find the prevailing computing platforms to be intricate. This highlights a pressing need for a specialized framework for phantom dose evaluation. To address this gap, we developed a user-friendly radiation dose assessment platform using the Monte Carlo toolkit, Geant4. The Tsinghua University Phantom Dose (THUDosePD) augments the flexibility of Monte Carlo simulations in dosimetric research. Originating from THUDose, a code with generic, functional, and application layers, THUDosePD focuses predominantly on anatomical phantom dose assessment. Additionally, it enables medical exposure simulation, intricate geometry creation, and supports both three-dimensional radiation dose analysis and phantom format transformations. The system operates on a multi-threaded parallel CPU architecture, with some modules enhanced for GPU parallel computing. Benchmark tests on the ICRP reference male illustrated the capabilities of THUDosePD in phantom dose assessment, covering the effective dose, three-dimensional dose distribution, and three-dimensional organ dose. We also conducted a voxelization conversion on the polygon mesh phantom, demonstrating the methods efficiency and consistency. Extended applications based on THUDosePD further underline its broad adaptability. This intuitive, three-dimensional platform stands out as a valuable tool for phantom radiation dosimetry research.

  • Characterization study of a broad-energy germanium detector at CJPL

    分类: 物理学 >> 核物理学 提交时间: 2016-08-31

    摘要: The ability of background discrimination using pulse shape discrimination (PSD) in broad-energy germanium (BEGe) detectors makes them as competitive candidates for neutrinoless double beta decay (0{\nu}\b{eta}\b{eta}) experiments. The measurements of key parameters for detector modeling in a commercial p-type BEGe detector are presented in this paper. Point-like sources were used to investigate the energy resolution and linearity of the detector. A cylindrical volume source was used for the efficiency calibration. With an assembled device for source positioning, a collimated 133Ba point-like source was used to scan the detector and investigate the active volume. A point-like source of 241Am was used to measure the dead layer thicknesses, which are approximately 0.17 mm on the front and 1.18 mm on the side. The described characterization method will play an important role in the 0{\nu}\b{eta}\b{eta} experiments with BEGe detectors at China JinPing underground Laboratory (CJPL) in the future.